Ground state solutions to Hartree–Fock equations with magnetic fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

Variational Ground State for Relativistic Ions in Strong Magnetic Fields

The lowest bound state of a one-electron ion in a constant magnetic field B is calculated from the pseudorelativistic no-pair Brown-Ravenhall operator. The variational wavefunction is chosen as the product of a Landau function (in the transverse direction) and a hydrogenic state (in the longitudinal direction). The dependence of the ground-state energy on the nuclear charge Z as well as on the ...

متن کامل

Ground state solutions for the nonlinear Schrödinger-Maxwell equations

In this paper we study the nonlinear Schrödinger-Maxwell equations { −∆u+ V (x)u+ φu = |u|p−1u in R3, −∆φ = u2 in R3. If V is a positive constant, we prove the existence of a ground state solution (u, φ) for 2 < p < 5. The non-constant potential case is treated under suitable geometrical assumptions on V , for 3 < p < 5. Existence and non-existence results are proved also when the nonlinearity ...

متن کامل

Symmetries and solutions of equations describing force-free magnetic fields

New analytical results for two-dimensional force-free fields are presented. First, a number of exact solutions for force-free fields described by Liouville equation are given and their physical relevance for laboratory and astrophysical plasmas is discussed. Subsequently, Lie point symmetries of Liouville equation are reviewed and Lie point symmetries of the equation describing helically symmet...

متن کامل

New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms

This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2017

ISSN: 0003-6811,1563-504X

DOI: 10.1080/00036811.2017.1370543